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ABSTRACT

An important issue in developing a forecast system is its sensitivity to additional observations for improving

initial conditions, to the data assimilation (DA) method used, and to improvements in the forecast model.

These sensitivities are investigated here for the Global Forecast System (GFS) of the National Centers for

Environmental Prediction (NCEP). Four parallel sets of 7-day ensemble forecasts were generated for

100 forecast cases in mid-January to mid-March 2016. The sets differed in their 1) inclusion or exclusion of

additional observations collected over the eastern Pacific during the El Niño Rapid Response (ENRR)

field campaign, 2) use of a hybrid 4D–EnVar versus a pure EnKF DA method to prepare the initial con-

ditions, and 3) inclusion or exclusion of stochastic parameterizations in the forecast model. The Control

forecast set used the ENRR observations, hybrid DA, and stochastic parameterizations. Errors of the

ensemble-mean forecasts in this Control set were compared with those in the other sets, with emphasis on

the upper-tropospheric geopotential heights and vorticity, midtropospheric vertical velocity, column-

integrated precipitable water, near-surface air temperature, and surface precipitation. In general, the

forecast errors were found to be only slightly sensitive to the additional ENRRobservations, more sensitive

to the DAmethods, and most sensitive to the inclusion of stochastic parameterizations in the model, which

reduced errors globally in all the variables considered except geopotential heights in the tropical upper

troposphere. The reduction in precipitation errors, determined with respect to two independent obser-

vational datasets, was particularly striking.

1. Introduction

The large improvement in weather prediction skill

over the past several decades has been described as a

‘‘quiet revolution’’ resulting from many small steps

rather than a few dramatic leaps (Bauer et al. 2015). One

has now apparently entered a stage of diminishing re-

turns in skill improvement, with no clear guidance as to

improving which aspects of current forecast systems

will yield the greatest benefit. Broadly speaking, fore-

cast systems have three basic elements: 1) the input

observations, 2) the data assimilation (DA) method

used to merge those observations with model-generated

guess fields to create the forecast initial conditions, and

3) the forecast model itself. As forecast systems continue

to evolve, their relative sensitivities to these three ele-

ments will evolve as well, and it will remain important

to identify the element with the largest sensitivity to

help set priorities in system development.

After decades of progress, both in situ and remotely

sensed observations available for forecast initialization

have become plentiful, albeit with important gaps in

the tropics and polar regions (see http://www.wmo.int/

pages/prog/www/OSY/GOS.html). DA techniques

have also improved, in both theory and implementation.
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In particular, two commonly used DAmethods—ensemble

Kalman filter (EnKF; Evensen, 2003) and four-dimensional

variational data assimilation (4DVar; Lewis andDerber,

1985; Courtier et al. 1994)—and their various hybrids

(e.g., 4D–EnVar; see section 2b) have matured in

merging observations with model-generated first-

guess fields to provide more accurate initial condi-

tions for forecasts. The forecast models themselves

have also improved, both in their representation of

dynamical and physical tendencies and their use of

much higher horizontal and vertical resolution (e.g.,

references in http://www.emc.ncep.noaa.gov/GFS/ref.

php). These developments, together with expanding

computing resources, now enable several operational

weather forecasting centers around the world to gen-

erate ensembles of high-quality 10-day global forecasts

on a 50 km or finer mesh every 12 h.

Despite this, weather forecasts continue to be far from

perfect. There is room for improvement in each of the

three basic forecast system elements. The question is in

which element to invest the most effort to gain the

greatest benefit. A first step toward addressing this is

to identify the element to which the forecasts are

most sensitive. We will adopt this approach here for the

Global Forecast System (GFS) used at the National

Centers for Environmental Prediction (NCEP). Specif-

ically, we will focus on its forecast performance and

sensitivities in the mid-January to mid-March 2016 pe-

riod during the mature phase of the 2015/16 El Niño
event. An intensive observational El Niño Rapid Re-

sponse (ENRR) field campaign was conducted by

the National Oceanic and Atmospheric Administra-

tion (NOAA) over the tropical and subtropical eastern

Pacific during the period (Dole et al. 2018), and the

impact of the additional observations on GFS perfor-

mance is of particular interest.

Section 2 provides relevant details of the additional

ENRR observations, followed by a description of the

numerical experiments performed to test the sensitiv-

ity of the GFS forecasts. Briefly, four parallel sets of

7-day 80-member ensemble forecasts were generated

for 100 forecast cases in the period, differing in their

1) inclusion or exclusion of the additional ENRR ob-

servations, 2) use of a hybrid 4D–EnVar versus a pure

EnKF DA method to prepare the initial conditions,

and 3) inclusion or exclusion of stochastic physical

parameterizations in the forecast model. The Control

forecast set used the ENRR observations, hybrid DA,

and stochastic parameterizations. Section 3 compares

the errors of the ensemble-mean forecasts in this Con-

trol set with those in the other sets, with empha-

sis on the errors of upper-tropospheric geopotential

heights and vorticity, midtropospheric vertical velocity,

column-integrated precipitable water, near-surface

temperature, and surface precipitation. A summary

and concluding remarks follow in section 4, empha-

sizing that although only a limited set of GFS sensi-

tivities were investigated here, our methodology could

also be fruitfully applied to investigate the sensitiv-

ities of other forecast systems to their three basic

elements.

2. Additional observations and experimental
design

a. ENRR field campaign

As discussed by Dole et al. (2018), a strong El Niño
event was projected to occur in the northern winter and

spring of 2015–16 based on observed tropical Pacific sea

surface temperature (SST) anomalies in the preceding

summer. NOAA seized this opportunity to undertake

the ENRR field campaign to record the event while it

was ongoing. The extra observations collected included

1) dropsonde, radar, and microwave radiometer obser-

vations from campaign flights (mostly within 1808–
1358W and between Honolulu and the equator),

2) radiosonde and surface observations from campaign

cruises (Honolulu to San Diego), 3) radiosonde and

surface observations from Kiritimati Island (1.98N,

157.48W), and 4) radar observations from the U.S. West

Coast. These ENRR observations, together with the far

more numerous routine conventional and satellite ob-

servations over the globe, provide an excellent oppor-

tunity to examine the impact of such event-oriented field

campaign observations on weather forecast skill. The

upper-air radiosonde and dropsonde observations cov-

ered most of the ENRR campaign area; there were

22 510 humidity observations, 33 646 temperature ob-

servations, and 35 943 wind observations by radiosondes

and dropsondes from 20 January to 16 March 2016. We

focus here on the forecast impact of only the upper-air

radiosonde and dropsonde observations from the cam-

paign, referring to them as ‘‘the ENRR observations.’’

[Full details of the campaign can be found in Dole

et al. (2018) and at https://www.esrl.noaa.gov/psd/

enso/rapid_response/, as well as in Slivinski et al. (2018,

manuscript submitted to Mon. Wea. Rev.).]

b. Analyses–initial conditions and ‘‘truth’’

For clean comparisons, we generated our own ana-

lyses to provide initial conditions for our 7-day fore-

casts.We used the same 64-level version of NCEP’sGFS

model (Environmental Modeling Center 2003) opera-

tional in April 2016 but at a lower horizontal resolution

(spectral truncation of 254, approximate grid spacing of

50 km) for all the analyses and forecasts. To generate

1238 MONTHLY WEATHER REV IEW VOLUME 147

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/4/1237/4848844/m
w

r-d-18-0239_1.pdf by N
O

AA C
entral Library user on 30 June 2020

http://www.emc.ncep.noaa.gov/GFS/ref.php
http://www.emc.ncep.noaa.gov/GFS/ref.php
https://www.esrl.noaa.gov/psd/enso/rapid_response/
https://www.esrl.noaa.gov/psd/enso/rapid_response/


the analyses using NCEP’s Global DA system, we

performed sequential 6-hourly forecast–analysis cy-

cles comprising the following steps:

Step 1: Combine an 80-member ensemble of 0–6-h fore-

casts with observations in that 6-h window to generate

an 80-member ensemble of preliminary analyses.

Step 2: Perform IAU (incremental analysis update;

see below for more details) from hour 0 to hour 6

to generate the ‘‘ultimate’’ analyses and continue

running the 80-member ensemble for the next 6-h

background (i.e., first guess) ensemble of forecasts.

Step 3: Repeat steps 1 through 2 for the next cycle.

In Step 1, we used either the ensemble Kalman fil-

ter method (EnKF; Evensen 2003) or the hybrid

four-dimensional ensemble variational method (hybrid

4D–EnVar; Buehner et al. 2013; Kleist and Ide 2015).

The EnKF method is a Monte Carlo approximation of

the Kalman Filter. It uses a model ensemble of finite

size to approximate the probability distribution of pre-

dicted states, and updates the model-generated a priori

state variables to a posteriori variables by using the

model ensemble covariance to estimate the Kalman

gain (Evensen 2003). A reasonably large ensemble size

is required for this purpose, and also to avoid abrupt

imbalances among the state variables being updated.

The problem of abrupt imbalances is partly overcome in

Step 2 through an incremental analysis update (IAU;

Bloom et al. 1996; Lei and Whitaker 2016; Takacs et al.

2018), which divides the analysis increment from a pre-

liminary analysis cycle into small portions and repeats

the background forecast by adding the portions as ex-

tra forcing to the forecast at every time step. The final

background forecast is the ultimate analysis, which

closely resembles the preliminary analysis at the end of

the forecast–analysis cycle but does not have abrupt

imbalances, and is continued as the preliminary forecast

for the next forecast–analysis cycle. For the present

study, each analysis that we used for model initialization

and verification purposes was the preliminary analysis

(i.e., the output of EnKF or hybrid DA before applica-

tion of the IAU forcing) in the current forecast–analysis

cycle, but it had the IAU forcing from the beginning of

the experiment period (i.e., 20 January 2016; see Fig. 1

and context) up to the previous forecast–analysis cycle.

There are two options in the NOAA EnKF code: the

serial ensemble square root filter (EnSRF) and the lo-

cal ensemble transform Kalman filter (LETKF). The

EnSRF used here is also implemented operationally in

the atmospheric GFS at NOAA. It is based on the serial

EnSRF described in Whitaker and Hamill (2002) and

uses the parallel algorithm described in Anderson and

Collins (2007) for computational efficiency.

The hybrid 4D–EnVar is a combination of EnKF

and 4DVar (four-dimensional variational method;

Lewis and Derber 1985; Courtier et al. 1994) which aims

(i) to combine the time-varying ensemble covariances

with static background error covariances to estimate

the total background error contribution to the cost

function being minimized, and (ii) to eliminate the use

of tangent-linear (TL) and adjoint (AD) models used

in pure 4DVar (Wang et al. 2008; Buehner et al. 2013;

Kleist and Ide 2015).

In addition to the inclusion of a static background

error covariance, the hybrid 4D–EnVar differs from the

EnKF in the way ‘covariance localization’ is performed.

Covariance localization is a method for dealing with

spurious covariances at large spatial lags that result from

using small ensemble sizes. In the hybrid 4D–EnVar

system, covariance localization is performed in model

space (Houtekamer and Mitchell 2001) instead of ob-

servation space (Gaspari and Cohn 1999; see summary

of both in Lei andWhitaker 2015). This can significantly

impact the assimilation of observations such as satellite

radiances, which involves using complicated forward

observation operators to link the model state to the ra-

diances (Campbell et al. 2010). In the global numerical

weather prediction (NWP) system of the National

Weather Service (NWS), an 80-member EnKF is run

operationally to initialize theGlobal Ensemble Forecast

System (GEFS) and to provide ensemble covariances

for the hybrid 4D–EnVar data assimilation (Kleist and

Ide 2015) used by the Gridpoint Statistical Interpolation

(GSI) analysis system that generates the high-resolution

deterministic analysis for the high-resolution GFS fore-

casts. In our analyses, we did not separately performhigh-

resolution deterministic analyses or forecasts; instead, we

substituted the ensemble mean as the deterministic so-

lution so that the interpolation from one resolution to

another was avoided.

FIG. 1. Schematic depiction of the 7-day forecasts generated and

verification period used. Each arrow represents one forecast case,

and only the portion in the verification period is evaluated for this

study. Note that there are 80 members in the ensemble forecast

for each forecast case.
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We performed the DA in Step 1 by using either

the EnKF or hybrid method, and either including or

excluding the ENRR observations, thus generating

four separate sets of 80-member ensemble analyses

for the ENRR period. Given computing and storage

constraints, we worked mainly with the hybrid-with-

ENRR set (hereafter the Control analysis set), the

hybrid-without-ENRR set (hereafter the Denial anal-

ysis set), and the EnKF-with-ENRR observations

(hereafter the EnKFonly analysis set). These three sets

of analyses were then used as initial conditions for

three separate sets of 7-day 80-member ensemble

forecasts. For forecast verification, we could have used

any one of these three analysis sets as ‘‘truth’’. How-

ever, we chose the Control analysis set for this purpose

as our ‘‘best’’ analysis product, both because of its as-

similation of all observations (including the ENRR

observations) and its improved quality resulting from

the hybridization. Using the EnKFonly or Denial an-

alyses instead of the Control analyses for forecast

verification did not affect any of our findings for fore-

casts beyond 24 h.

c. Forecasts and evaluations

The three analysis sets were used to initialize three

sets of 7-day forecasts every 12h in the 57-day (20

January–16 March) ENRR period. We will henceforth

refer to these as Control, Denial, and EnKFonly fore-

casts, respectively. Their performance was evaluated by

comparing them with the verifying Control analyses,

and with independent observational estimates in the

case of precipitation. The impact of the ENRR obser-

vations was gauged by comparing the skill of the Control

and Denial forecasts, and the impact of the DA method

by comparing the skill of the Control and EnKFonly

forecasts. Table 1 lists these three sets of forecasts and

their relevant characteristics.

All three forecast sets used stochastic parameteriza-

tions (SPs) to perturb the deterministic physical ten-

dencies in the model. The use of SPs in operational

forecasts is usually motivated by a need to increase the

ensemble spread to make it more consistent with the

generally larger root-mean-square error (RMSE) of

ensemble-mean forecasts. Such a consistency is also

implicitly assumed in the EnKF. The GFS SP module

can employ three different types of SPs, namely SPPT

(stochastically perturbed physical tendencies; Palmer

et al. 2009; Shutts et al. 2011), SHUM (stochastic hu-

midity perturbations in the boundary layer; Tompkins

and Berner 2008), and SKEB (stochastic kinetic energy

backscatter; Berner et al. 2009), to increase the ensem-

ble spread. The SPPT scheme has the following general

form for the tendency perturbation:

_x
p
5 (11 rm) _x

c
,

where _xc and _xp are the physical tendencies of the

state variable before and after applying the stochastic

perturbation, respectively; r is a stochastic horizontal

weight that is bounded in the interval [21, 1] by using an

inverse logit transform of a Gaussian distribution; and

m is a vertical weight that is 1 between the surface and

100 hPa and is tapered to zero at 25 hPa. The horizontal

weight r can be represented in terms of spherical har-

monics as

r5�
mn

r̂
mn
Y

mn
,

where r̂mn is the spherical harmonic coefficient of r for

total wavenumber n and zonal wavenumber m. This

enables the tendency perturbation to be made scale-

aware and smoothed in space to the degree desired.

Palmer et al. (2009) (see also Sardeshmukh 2005) rep-

resented r̂mn as a combination of a first-order autore-

gressive AR(1) process and spatially smoothed white

noise as

r̂
mn
(t1Dt)5fr̂

mn
(t)1s

n
h
mn
(t) ,

where Dt is the model time step, f5 exp(2Dt/t) is the
AR(1) coefficient, sn is the standard deviation (i.e.,

strength) of the tendency perturbation, and hmn(t) is a

Gaussian random number with zero mean and unit

variance. sn is a function of total wavenumber n and

spatial autocorrelation length scale L such that the

variance in grid space Var(r) is uniform and the spatial

pattern has a spatial autocorrelation corresponding to

the equivalent of a Gaussian function on the sphere

(Palmer et al. 2009; Sardeshmukh 2005; Weaver and

Courtier 2001). The SPPT scheme is applied to the

tendencies of zonal wind, meridional wind, specific hu-

midity, and temperature induced by the GFS physics

package, but not to the tendencies induced by the clear-

sky radiation scheme.

The SHUM perturbations are similar to the SPPT

perturbations, except that they are applied to the

humidity itself and not the humidity tendency (al-

though they may be interpreted as perturbations to

the humidity tendency integrated over a model time

step), and only in the lower troposphere. The for-

mula is

q
p
5 (11 rm)q

c
,

where qc and qp are the specific humidity before and

after the stochastic perturbation respectively. The vertical
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weightm decays exponentially in pressure away from the

surface. The scheme additionally constrains the specific

humidity to remain positive.

We used SPPT and SHUM perturbations (but not

SKEB perturbations) in all three sets of forecasts.

We could have specified multiple values of the AR(1)

e-folding time scale t, spatial variance Var(r), and spa-

tial autocorrelation scale L to avoid the early saturation

of ensemble spread at small scales. However, for sim-

plicity we chose fixed values of t5 6 h, Var(r)5 0.8, and

L 5 500 km for the SPPT, and t 5 6 h, Var(r) 5 0.005,

and L 5 500km for the SHUM perturbations.

Finally, in order to quantify the impact of the SPs, we

generated a fourth set of 7-day forecasts similar to the

Control forecasts but without SPs (labeled noSP; see

Table 1). As with the other three forecast sets, the skill

of the noSP forecasts was evaluated by comparing with

the verifying Control analyses, and the impact of the SPs

was gauged by comparing the skill of the Control and

noSP forecasts.

To summarize, the Control, Denial, EnKFonly and

noSP forecasts were each 7-day 80-member ensemble

forecasts, started twice a day at 0000 and 1200 UTC in

the 57-day ENRR period. There were thus 114 forecast

cases in each set. The forecast output frequency was 3h

(i.e., 3, 6, 9, . . . , 168 h). To ensure the same number of

forecast verifications for all forecast lead times, we

only evaluated forecasts valid between 27 January and

16March. As illustrated in Fig. 1, this verification period

spans 50 days and contains 100 verification cases (with

each case corresponding to one initialization time)

for each forecast lead time. Overall, for each fore-

cast lead time we thus had 4 sets 3 80 forecasts 3
100 cases 5 32 000 forecasts of all model variables at all

grid points. We shall show below that these large sample

sizes enable us to quantify the impacts of the ENRR

observations, DAmethods, and SPs on the forecast skill

with statistical confidence.

3. Forecast evaluation and comparisons

a. Forecast errors

We define the forecast error as the RMSE of the

M580 member ensemble-mean forecast with respect to

the 80-member ensemble-mean Control analysis, de-

termined over all N 5 100 forecast cases as

RMSE(t)5

(
1

N
�
N

n51

V 02
n,t

)1/2

,

where

V 0
n,t 5V

f ,n,t
2V

a,n
5

1

M
�
M

m51

Vm
f ,n,t 2

1

M
�
M

m51

Vm
a,n.

Here subscript t refers to forecast lead time, f and a to

the forecast or verifying analysis of variable V, n to the

forecast case number, and m to the ensemble mem-

ber number. This expression was used to calculate

RMSE(t) for selected variables at each grid point. An

analogous expression, with the area-weighted grid-

point values of V 02
n,t averaged additionally over the

globe as well as over some specific regions, was used

to calculate global and regional values of RMSE(t).

We focus here on the forecast errors of geopotential

height at 200 hPa (Z200hPa), relative vorticity at 200 hPa

(j200hPa), vertical velocity at 500 hPa (v500hPa), column-

integrated precipitable water (PWAT), and 2-m air

temperature (T2m). The RMSEs for a few additional

variables were also examined but are not shown here

due to their similar behavior.

For precipitation, we compared forecasts of 12-h ac-

cumulated precipitation values (AP12HR) with two in-

dependent observational datasets: the NASA Global

Precipitation Measurement (GPM) dataset (Huffman

et al. 2014) and the Precipitation Estimation from

Remotely Sensed Information using Artificial Neural

Networks (PERSIANN) dataset (Sorooshian et al. 2014;

Ashouri et al. 2015). For brevity, we only show the

comparison with the NASA GPM dataset, since the

comparison with the PERSIANN dataset yielded simi-

lar results.

Figure 2 shows the area-weighted global RMSEs of

the Control, Denial, EnKFonly, and noSP forecasts of

Z200hPa, j200hPa, v500hPa, PWAT, and T2m at 12-hourly

intervals up to 7 days (hour 168), as well as the RMSEs

of AP12HR between 208S and 208N and between 608S
and 608N. The initial (hour 0) error of the Denial

TABLE 1. List of forecast ensembles generated

Label Initial condition Data assimilation method Forecast model

Control Includes ENRR obs Hybrid Includes stochastic physics

Denial Excludes ENRR obs Hybrid Includes stochastic physics

EnKFonly Includes ENRR obs EnKF Includes stochastic physics

noSP Includes ENRR obs Hybrid No stochastic physics
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forecasts reflects the difference between the Control and

Denial analyses (not shown). TheControl forecasts have

slightly smaller errors than the Denial forecasts un-

til hour 24 but show no discernible impact thereafter, at

least in this global metric, of including the ENRR ob-

servations in the initial conditions.

In contrast, the global RMSEs of the EnKFonly fore-

casts are larger than those of the Control and Denial

FIG. 2. Global RMSEs of the Control (solid gray), Denial (dashed blue), EnKFonly (dotted green), and

noSP forecasts (dash–dot red), determined with respect to the Control analyses for global (a) 200-hPa

heights (Z200hPa),(b) 200-hPa vorticity (j200hPa), (c) 500-hPa vertical p velocity (v500hPa), (d) precipitable

water (PWAT), and (e) 2-m air temperature (T2m). (f) The RMSE of 12-h accumulated precipitation totals

in the 208S–208N domain (thin upper curves) and the 608S–608N domain (thick lower curves), deter-

mined with respect to NASA GPM observational dataset. Note the ordinate for the precipitation RMSE

starts at 6 mm.
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forecasts throughout the forecast period. Indeed, the

EnKFonly forecasts are worse than the Control fore-

casts beyond day 1 even when both are verified against

the EnKFonly analyses (not shown) instead of the

Control analyses as in Fig. 2. We should stress that this

result does not imply that an EnKF method is inferior

to a hybrid method in general. One can think of sev-

eral ways in which our particular implementation of

the EnKF algorithm could have been improved, such

as by adjusting the vertical covariance localization of

the satellite radiance observations, by improving the

balance constraints on analysis increments, and by in-

creasing the ensemble size of the ensemble Kalman fil-

ter. Nevertheless, Fig. 2 clearly demonstrates the greater

sensitivity of the forecast errors to initial conditions

prepared using different DA methods than to the in-

clusion or exclusion of the ENRR observations in those

initial conditions.

The global RMSEs of the Control forecasts are

smaller than those of noSP forecasts for v500hPa, j200hPa,

and PWAT throughout the 7-day forecast range, dem-

onstrating the beneficial impact of including SPs in the

model. Similar reductions in ensemble-mean forecast

errors have been reported in other forecast systems

(e.g., Leutbecher et al. 2017). The global RMSEs of the

noSP forecasts are larger than those of the EnKFonly

forecasts after day 3 for v500hPa, day 6 for j200hPa, and

day 5 for PWAT. In other words, beyond day 3 these

forecasts errors are more sensitive to including or not

including SPs in the forecast model than they are to

the use of the hybrid versus EnKF DA method to

prepare the forecast initial conditions. The v500hPa er-

rors saturate by about day 6 (Fig. 2c), but interest-

ingly the PWAT errors do not saturate even by day 15

(not shown). The precipitation errors (Fig. 2f) saturate

at an intermediate lead time of about day 7. Although

v500hPa and PWAT are both important for determining

precipitation strength, the near-simultaneity of v500hPa

and precipitation error saturation suggests that v500hPa

has a stronger control than PWAT on determining

precipitation variations on the time scales of synoptic

weather (see also Sardeshmukh et al. 2015).

The error growth curves of T2m (Fig. 2e) and pre-

cipitation (Fig. 2f) in the Control, Denial, EnKFonly,

and noSP forecasts have a similar general character to

that of the other variables, with little or no sensitivity to

the ENRR observations, considerably higher sensitivity

to the choice of the hybrid versus EnKF DA method,

and greatest sensitivity to the use of SPs in the model.

For all variables in Fig. 2 except Z200hPa, the Control

forecasts are the best and the noSP forecasts are the

worst by day 7. The impact of the SPs is evidently cu-

mulative over time, resulting by day 7 in a reduction of

the precipitation forecast error in the Control forecasts

by ;4.3% in the 208S–208N latitude domain and by

;3% in the 608S–608N latitude domain.

Note that the errors of the 12-h accumulated pre-

cipitation amounts in all four forecast sets, mea-

sured with respect to the observational GPM values,

are already quite large (.6.5mm) at hour 12. The

GPM precipitation is a blend of radar-reflection and

radiance-based precipitation estimates from multiple

satellites, and is calibrated against in situ ground obser-

vations. For a cleaner comparison with the precipitation

forecasts, we integrated the 30-min 0.18 resolution GPM

values to 12-h 0.58 resolution values. Given that precipi-

tation is a positive semidefinite quantity, its substantial

error even at short forecast ranges suggests that there

are precipitation events of which locations and large

magnitude (.100-mm accumulations in 12h) are not

captured by our forecasts.

The general conclusions drawn from the global fore-

cast error growth curves in Fig. 2 are also valid for lim-

ited regions. To illustrate this, Fig. 3 shows the RMSEs

of v500hPa in the Northern Hemisphere (208–908N),

Southern Hemisphere (208–908S), tropics (208S–208N),

and the contiguous United States (CONUS; 248–508N,

1258–668W). The errors saturate in the Northern Hemi-

sphere, Southern Hemisphere, and tropics by day 7, and

nearly saturate in the CONUS region by the end of day 7.

Geographically, the errors are largest in the extratropical

storm track regions and in areas of tropical deep con-

vection (Fig. 4a). They are particularly large over the

CONUS region, not surprisingly because the region

overlaps strongly with the northern hemispheric storm

track at those longitudes, but also possibly because of

erroneous model representations of the influence of the

Rocky Mountains on synoptic weather systems.

A beneficial impact of the ENRR observations on the

regional v500hPa forecasts is not discernible in Fig. 3

beyond day 1, which reflects an average of small differ-

ences of mixed signs between the Control and Denial

forecasts. For instance, small positive and negative

impacts on day 7, likely not statistically significant, are

scattered around the globe (Fig. 4b) with no coherent

geographical structure. On the other hand, using the

hybrid versus the EnKF initial conditions leads to

smaller day-7 errors in many though not all regions

(Fig. 4c). However, including SPs in the model un-

ambiguously reduces the v500hPa error almost every-

where on the globe (Fig. 4d). The improvement is

particularly clear in the Northern Hemisphere storm

track and tropical convective regions.

Given the strong link between v500hPa and precipita-

tion on synoptic time scales, the results for the pre-

cipitation errors in the Control forecasts and how they
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differ from the errors in the other three forecast sets

(Fig. 5) are highly consistent with the results for the

v500hPa errors in Fig. 4. Similar to the v500hPa errors, the

precipitation errors are least sensitive to including or

excluding the ENRR observations, more sensitive to the

choice of the hybrid versus EnKF DA method used to

initialize the forecasts, and most sensitive to using or not

using the SPs in the forecast model.

Figure 6 shows the errors of near-surface air temper-

ature T2m in the Control forecasts and how they differ

from the errors in the other three forecast sets. Note that

the prescribed SST boundary conditions are updated

daily in the analyses but not in the 7-day forecasts. Still,

because the SSTs vary little and the T2m values over the

ocean are tightly linked to them, theT2mRMSE over the

oceans remains relatively small over the 7-day forecast

range. Also, because the prescribed SSTs are identical in

all the four forecast sets, the differences of the T2m er-

rors over the oceans among the forecast sets are small as

well. The Control forecast errors are larger over land

and largest in high latitudes (Fig. 6a). The differences

between the RMSEs of the Control andDenial forecasts

are also large over high-latitude land, but with mixed

signs (Fig. 6b). The impact of the choice of the hybrid

over the EnKF DA method is stronger than the impact

of the ENRR observations (cf. Figs. 6c and 6b). In-

cluding the SPs again has the largest impact (Fig. 6d),

with an unambiguous reduction of the T2m error almost

everywhere, but especially over land areas.

Using SPs is clearly beneficial for the v500hPa, pre-

cipitation, and T2m forecasts over most of the globe.

For upper-tropospheric geopotential heights (Z200hPa),

however, the benefit is not so clear-cut. The impact is

negligible in the extratropics and negative in the tropics,

as shown in Fig. 7 for the same four regions as in Fig. 3.

The Control and Denial forecast errors are again very

similar, except in the CONUS region where the Control

errors are slightly smaller than the Denial errors on days

3–5 (Fig. 7d). Perhaps this is to be expected, given that

the CONUS region is downstream of the region of the

ENRR observations. We also show below in section 3b

that even though the positive impact of the ENRR ob-

servations is weak, there is a recognizable enhancement

of El Niño–related features over North America in

Z200hPa due to the ENRR observations.

It is evident that the Z200hPa RMSE sensitivity to the

DA methods is different in the Northern Hemisphere,

Southern Hemisphere and tropics (cf. Figs. 7a–c). Using

the hybrid versus the EnKF method has a large posi-

tive impact on the Z200hPa forecasts in the Southern

FIG. 3. Domainv500hPa RMSEs of the Control, Denial, EnKFonly, and noSP forecasts with respect to theControl

analyses in the (a) NorthernHemisphere (208–908N), (b) SouthernHemisphere (208–908S), (c) tropics (208S–208N),

and (d) contiguous United States (CONUS; 1258W–668W, 248–508N).
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Hemisphere, a weaker positive impact in the Northern

Hemisphere, but a negative impact in the tropics start-

ing from about day 2. Interestingly, using the Control

(hybrid DA) versus the EnKFonly analyses as initial

conditions also increases the positive tropical bias of

the day-7 Z200hPa Control forecasts (cf. Figs. 9a and 9c).

The EnKFonly analyses have lower Z200hPa than the

Control analyses in the tropics, resulting from several

FIG. 5. (a) The AP12HR RMSEs of the Control forecasts with respect to independent NASA GPM product at

the end of day 7; (b) the AP12HRRMSE differences between the Control and Denial forecasts at the end of day 7;

(c) as in (b), but between the Control and EnKFonly forecasts; and (d) as in (b), but between the Control and noSP

forecasts. The valid geographic domain is between 608S and 608N. If there exist only missing values in a grid box

(0.58 3 0.58) at any moment during the verification period, that box is painted gray in (b)–(d).

FIG. 4. (a) The v500hPa RMSEs of the day-7 Control forecasts; (b) the differences of the v500hPa RMSEs between

the day-7 Control andDenial forecasts; (c) as in (b), but between the Control and EnKFonly forecasts; and (d) as in

(b), but between the Control and noSP forecasts.
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methodological differences in the EnKF algorithm, in-

cluding (i) covariance localization of satellite radiances

[see Lei et al. (2018) for a recent study]; (ii) lack of ad-

ditional balance constraints on analysis increments;

(iii) no static background error covariances; and

(iv) use of maximum likelihood versus minimum vari-

ance estimation as in 4D–EnVar. While both Control

and EnKFonly forecasts develop positive tropical biases

FIG. 6. As in Fig. 4, but for T2m.

FIG. 7. As in Fig. 3, but for Z200hPa.
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over 7 days, the EnKFonly forecasts are closer to the

truth and have smaller RMSEs. The forecast model drift

toward higher Z200hPa in the tropics is worthy of further

investigation. With regard to the impact of SPs on the

Z200hPa forecasts, their positive impact does not become

clear in the global RMSE metric until the end of day 7

(Fig. 2a), because of cancellations between the positive

impacts in the extratropics and negative impacts in the

tropics seen in Fig. 8d.

Figure 8 shows the day-7 errors of the Control Z200hPa

forecasts and how they differ from the errors in the other

three forecast sets. The impact of theENRRobservations

is relatively small in the tropics and mixed in the extra-

tropics (Fig. 8b). Using the hybrid versus EnKF initiali-

zation yields a similarly mixed impact in the extratropics,

and a small but clear degradation in the tropics (Fig. 8c).

Using the SPs in the forecast model yields a more con-

sistent beneficial impact in the extratropics, but also a

much stronger degradation of the Z200hPa forecasts in the

tropics (Fig. 8d). Interestingly, this degradation occurs

not just over the tropical convective areas but also over

clear-sky areas in the descending branch of the Pacific

Walker cell, in which one would expect scant local SPPT

tendencies of radiative heating.

b. Forecast biases

Thus far, we have considered GFS forecast sensi-

tivities to the ENRR observations, data assimilation

method, and stochastic parameterizations in terms of

RMSE measures of ensemble-mean forecasts. It is also

relevant to consider how these three factors affect the

mean forecast drift, i.e., the systematic bias at each

forecast lead time of the ensemble-mean forecasts av-

eraged over all 100 forecast cases. Figure 9a shows the

biases of the day-7 Z200hPa Control forecasts. Note that

unlike the RMSEs, which are positive at all locations,

the biases can be positive or negative. Some prominent

features in Fig. 9a, such as the positive biases over North

America, East Asia, Europe, and the tropics, and the

negative biases over the northwest Pacific, northeast

Pacific, and northeastern United States, appear early

in the forecasts and are evident throughout the 7-day

forecasts (not shown).

The other panels of Fig. 9 show the systematic dif-

ferences of the ensemble-mean Z200hPa Control fore-

casts from the ensemble-mean forecasts in the other

three forecast sets. They may also be interpreted as the

impacts of the ENRR observations (Fig. 9b), hybrid

versus EnKF initial conditions (Fig. 9c), and stochastic

parameterizations (Fig. 9d) on the Control forecast bia-

ses. The impact of the ENRR observations is apparently

to intensify El Niño–related features in the day-7 Z200hPa

forecasts: a low along the Canadian west coast and

U.S. Pacific Northwest, a high to the west of the Great

Lakes, and another high off the Northeast U.S. coast.

Although this impact is not statistically significant

FIG. 8. (a) The Z200hPa RMSEs of the Control forecasts at the end of day 7; (b) the Z200hPa RMSE differences

between the Control and Denial forecasts at the end of day 7; (c) as in (b), but between the Control and EnKFonly

forecasts; and (d) as in (b), but between the Control and noSP forecasts.
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(see Fig. 11), it is not inconsistent with the response to

an anomalous equatorial heat source located east

of the date line (Ting and Sardeshmukh, 1993) during

El Niño events. The impact is likely due to a slight

but systematic strengthening of the tropical upper-

tropospheric convective outflow in the Control ana-

lyses using the ENRR wind observations (Slivinski

et al. 2018, manuscript submitted toMon.Wea. Rev.) and

consequently the Rossby wave source associated with

the El Niño–related tropical heating (Sardeshmukh and

Hoskins, 1988).

The impacts of the DA method and SPs on the

ensemble-mean Z200hPa Control forecast biases in

Fig. 9c are much larger than those of the ENRR ob-

servations. Both increase the ensemble-mean Z200hPa

in the tropics and subtropics, and contribute to the

positive bias of the Control Z200hPa forecasts over

these large regions covering more than 50% of the

globe. The negative impact of the SPs is especially

strong and remarkable, considering that the Control

forecast biases are determined with respect to ana-

lyses which include SPs in the DA model. This deg-

radation is evident as early as day 1 in the tropics,

spreading thereafter to higher latitudes (not shown).

A preliminary diagnosis suggests that it originates

largely from a nonlinear response of convection to the

SHUM perturbations, which are themselves unbiased

(i.e., have zero mean). The impact of using the hybrid

versus EnKF initial conditions is more mixed in this

regard, with alternating positive and negative impacts

along the Northern Hemisphere extratropical jet

stream waveguide.

Figure 10 shows similar bias results for v500hPa in an

identical format to Fig. 9. To focus on larger-scale

features, we smoothed the fields using the spatial fil-

ter described in Sardeshmukh and Hoskins (1984),

retaining scales corresponding to total spherical wave-

numbers 15 and lower. Even so, the fields remain noisy,

but with a clear suggestion of a wave train of alter-

nating positive and negative Control forecast biases

along the extratropical jet stream waveguide. This

wave train is also evident in the other panels of Fig. 10

showing the bias impacts of the ENRR observations,

using the different DA methods, and SPs. Inspection

of maps similar to those in Fig. 10, but for earlier

forecast lead times (not shown) reveal this wave train

to be a remarkably robust eastward propagating fea-

ture of the Control forecast biases and bias impacts.

Note that the bias impacts of the ENRR observations

and DA method stem only from differences in the

forecast initial conditions, whereas the bias impacts

of the SPs result from changes to the forecast model.

FIG. 9. (a) Bias of case-mean ensemble-mean day-7 Z200hPa Control forecasts with respect to the Control

analyses; (b) difference of case-mean ensemble-mean Control and Denial forecasts; (c) difference of case-mean

ensemble-mean Control and EnKFonly forecasts; and (d) difference of case-mean ensemble-mean Control and

noSP forecasts. Note that the contour interval in (a) is 4.5 times that in the other panels.
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The impact of the ENRR observations occurs initially

as westward propagating tropical waves that provide

perturbations in sensitive regions for exciting the

midlatitude wave train. The impact of the DAmethod

is stronger than that of the ENRR observations, be-

cause the systematic differences between the hybrid

and EnKF DA (see section 2b for the DA method

description) are larger than those between the Con-

trol and Denial analyses. The impact of the SPs is

different in being much stronger in the tropics, and

with a slower emergence of the midlatitude wave

train. This slower emergence is not unexpected, since

the SPs provide new perturbations throughout the

forecast and prevent the occurrence of coherent op-

timal conditions for exciting the wave train.

The bias results in Figs. 9 and 10 have a dynamically

meaningful interpretation in at least the extratropics.

The extratropical wave train is highly reminiscent of

the most unstable (or least damped) perturbation

eigenmode of the extratropical circulation investi-

gated by Hall and Sardeshmukh (1998). On the other

hand, since almost any perturbation can set off such

an unstable eigenmode with arbitrary amplitude and

phase, its appearance in our bias impact statistics

makes it harder to distinguish among our estimated

bias sensitivities to the ENRR observations, DA

methods, and SPs and to establish their statistical

significance.

Indeed, it turns out that the bias impacts in Figs. 9b,

9d, 10b, and 10d are generally not statistically significant

in the extratropics. This is shown in Fig. 11 for Z200hPa

and v500hPa in terms of the Student’s t scores of the es-

timated bias differences. The details of these signifi-

cance calculations are provided in appendix A. The

impact of the ENRR observations on the day-7 forecast

biases is insignificant almost everywhere on the globe.

While the bias impacts of the hybrid DA are significant

in some scattered areas in the extratropics, the bias im-

pacts of the SPs are generally insignificant outside the

tropics. However, they are both highly significant in the

tropics.

4. Summary and conclusions

In our forecast sensitivity experiments, the impact of

the ENRRobservations on theRMSEs of the ensemble-

mean forecasts was relatively large at short forecast lead

times (about 1 day) whereas the impact of using the

hybrid versus EnKF DA method lasted throughout the

forecast period (7 days). This was evident for all the six

variables examined (Z200hPa, j200hPa, v500hPa, PWAT,

T2m, andAP12HR). The impact of the SPs was to reduce

FIG. 10. As in Fig. 9, but for v500hPa. Note that the contour interval in (a) is 5 times that in the other panels. The

additional thick black curves in the extratropical Northern Hemisphere enclose the region of 200-hPa mean zonal

winds stronger than 30 m s21 in the Control analysis, which is a good proxy of the extratropical baroclinic

waveguide.
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the RMSEs of the ensemble-mean forecasts of all these

variables, except Z200hPa in the tropics. Furthermore,

this generally positive impact of the SPs grew with

forecast lead time. The mechanisms through which SPs

reduce the errors of ensemble-mean forecasts are wor-

thy of a more detailed investigation, which will be re-

ported elsewhere.

To varying degrees, the ENRR observations, DA

method, and SPs also impacted the forecast biases. The

impact of the ENRR observations was the weakest and

not statistically significant over most of the globe. The

impacts of the DA method were statistically signifi-

cant in the tropics and in some scattered areas in the

extratropics, while the impacts of the SPs were highly

significant and generally concentrated in the tropics.

The impact of the SPs was stronger than that of the DA

method.

In summary, our goal in this study was to assess the

relative sensitivities of global GFS forecasts dur-

ing late winter/early spring 2016 to the additional

ENRR observations collected during the period, to

the DA method used to provide the forecast initial

conditions, and to the use of SPs in the forecast model.

Of these, the sensitivity to the additional ENRR

observations, in terms of both biases and RMSEs of

the ensemble-mean forecasts, was found to be the

weakest, and that to the SPs the strongest, in the 100

forecast cases investigated. The generally positive

impact of the SPs on the ensemble-mean forecasts,

and also their strongly negative impact on the tropical

FIG. 11. (left) The Student’s t scores for the day-7 Z200hPa bias differences between (top) the Control and Denial

forecasts, (middle) the Control and EnKFonly forecasts, and (bottom) the Control and noSP forecasts. A

value of 61.645 is 10% significant in two-tailed test, 61.96 is 5% significant, and 62.576 is 1% significant.

(right) As in (left), but for v500hPa fields. The thick black 30 m s21 contour of the 200-hPa zonal winds in

the Northern Hemisphere shows the approximate location of the upper-tropospheric jet stream waveguide, as

in Fig. 10.
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Z200hPa forecasts, are noteworthy and require further

investigation.

Modern forecast systems are sensitive to many sys-

tem elements, and our investigation was certainly not

meant to be exhaustive in this regard. Rather, our goal

was to provide a sense of the relative sensitivities to

the three principal types of development activities that

are of current interest at major forecasting centers:

collecting and using more observations, developing

better data assimilation methods, and improving the

forecast models.

As far as we are aware, our study is the first to per-

form sensitivity tests of sufficient size simultaneously

on all the three basic elements of an ensemble forecast

system to produce statistically meaningful results for

intercomparisons. Even so, the generalizability of our

results is limited. For example, our result that the ad-

ditional ENRR observations did not significantly im-

prove the GFS forecast skill does not necessarily imply

that additional observations will have little impact on

forecast skill in general. It is well known that short-

range forecasts of high-impact weather events benefit

from additional in situ observations (e.g., NOAA

Sensing Hazards with Operational Unmanned Tech-

nology project). Clearly, the impact of additional ob-

servations depends on their relative augmentation of

preexisting observational networks as well as on the

types and scales of target weather events.

Our investigation of forecast sensitivities to DA

methods was likewise not exhaustive, as we only com-

pared one implementation of the hybrid 4D–EnVar to

one implementation of the EnKF. We might have ob-

tained different results by using, for example, a dif-

ferent relative weighting of the static and time-varying

background error covariances in the cost function of

the hybrid filter (see section 2b), or by further opti-

mizing the EnKF parameters. Adopting another dis-

tinct DA method might also have yielded different

results in this regard.

Perhaps the strongest robust conclusion of our

study is that utilizing even simple types of stochastic

parameterizations (SPs) in the forecast model can

have stronger and generally beneficial impacts on

forecast skill than tinkering with other elements of

current forecast systems. However, even this con-

clusion comes with a caveat that we did not exhaus-

tively investigate forecast sensitivities to other types

of stochastic parameterizations. Nonetheless, the

main positive result from including stochastic pa-

rameterizations seems clear.

We end with a cautionary note that state-of-the-art

forecast systems are now sufficiently advanced and

finely tuned that establishing the impacts of forecast

system changes on forecast skill with statistical con-

fidence requires careful numerical experimentation

with large forecast ensemble sizes. The fact that even

with 8000 (5 100 forecast cases 3 80 ensemble mem-

bers for each case) 7-day forecasts in each of our four

forecast sets (Control, Denial, EnKFonly, noSP), the

apparently large impacts on the extratropical biases in

Figs. 9 and 10 turned out to be not statistically significant

in the Northern Hemisphere upper-tropospheric wave-

guide provides a sobering reminder in this regard.
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APPENDIX A

Student’s t Tests for Samples with Dependency

To test the statistical significance of the forecast dif-

ferences in Figs. 9 and 10, we used the Student’s t test

(see Fig. 11 for their t values), assuming that the vari-

ables are normally distributed. Specifically, at each grid

point we computed the t statistic

t5
x
1
2 x

2

s2
1

n
1
*
1

s2
2

n
2
*

� �1/2
,

where x1 and x2 are the means of 8000 (5 100 fore-

cast cases 3 80 ensemble members/forecast case) valid

forecast values from two different forecast sets, s2
1 and

s2
2 are the variances of the 8000 values in the two fore-

cast sets, and n1* and n2* are the estimated degrees of

freedom (DOF) or effective sample sizes.

The DOF are smaller than 8000, because the I 5 80

ensemble values for each forecast case are not truly

independent, and the J 5 100 forecast cases also have

some serial dependence since they are initialized only

12 h apart. We estimated the DOF as follows. Let zij be

the forecast from the ith ensemble member and jth

forecast case. One can group zij by ensemble member

or case number so that

fz
ij
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i
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where xi is the case series of the ith ensemble member,

and yj is the ensemblemember series of the jth case. One

can think of x and y as the row and column vectors, re-

spectively, of the matrix z. Then one can write

Var

 
�
I

i51

x
i

!
5 �

I

i51

Var(x
i
)1 �

i 6¼k

Cov(x
i
, x

k
).

This variance has two contributions: 1) the sum of the

variances of the individual ensemble members, and

2) the sum of covariances between any two distinct en-

semble members. This may also be expressed as

Var

 
�
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x
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!
5Var(IM

x
)5 I2Var(M

x
) ,

where Mx 5 1/I�I

i51xi is the case series of the ensemble

means. By combining the two equations above, and as-

suming that all the zij are independent and identically

distributed (i.i.d.), the variance of the ensemble-mean

forecasts, from the law of large numbers (LLN), may be

written as
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However, the zij are not independent, because of the

nonzero covariance between any two distinct ensemble

members
h
�i 6¼kCov(xi, xk) 6¼ 0

i
. If positive, this covari-

ance makes the ratio
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less than 1. The DOF in the ensemble member di-

mension (i.e., the effective ensemble size) is then not I

but I 3 rx since

Var(M
x
)5

Var(z
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)

I3 r
x

agrees with the LLN. Similarly, the ratio
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)

,

provides an estimate of the dependency among the dif-

ferent forecast cases. The overall DOF is then (I3 rx)3
(J 3 ry) 5 8000 3 rx 3 ry.

Figure A1 shows maps of Var(zij),�I

i51Var(xi)/I, and

�J

j51Var(yj)/J for the spatially smoothed day-7 v500hPa

Control forecasts. If all the forecasts were independent,

the three maps would be identical. The results show that

rx is a nearly uniform 0.8 everywhere over the globe,

while ry is generally between 0.3 and 0.9. The overall

DOF v500hPa in the Control forecasts is thus generally

between 2500 and 5000 for our samples of size 8000.

The variance of the ensemble members is clearly

representative of the total variance over the whole

FIG. A1. (top) The total variance of the spatially smoothed day-7

v500hPa Control forecasts; (middle) the sum of the variances within

the individual ensemble members across the cases, divided by

group size 100; and (bottom) the sum of the variances within the

individual cases across the ensemble members, divided by group

size 80 (color shaded), and the ratio of the values of the sum of the

variances to the total variance (contours). The contour interval in

the bottom panel is 0.1, and the 1 contour is thickened. The vari-

ance ratio in the middle panel is ;0.79 almost uniformly over the

globe and hence no contour is plotted. Note that if all the forecasts

were independent, the values in the middle and bottom panels

would be equal to those in the top panel.
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FIG. B1. Global RMSE differences between the Control and Denial forecasts (solid blue), between the Control

and EnKFonly forecasts (solid green), and between the Control and noSP forecasts (solid red) for (a) 200-hPa

geopotential heights (Z200hPa), (b) 200-hPa vorticity (j200hPa), (c) 500-hPa vertical p velocity (v500hPa),

(d) precipitable water (PWAT), and (e) 2-m air temperature (T2m). (f) As in (a)–(d), but for 12-h accumulated

precipitation (AP12HR) RMSE differences in the 208S–208N (thin curves) and the 608S–608N (thick curves)

latitude domains. The dotted lines represent the 2.5% (below DRMSE50) and 97.5% (above DRMSE50) of

the constructed distributions for Control2Denial (blue), Control2EnKFonly (green), and Control2 noSP

(red), derived from the Bootstrap method.
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globe, except that the magnitude is smaller because

the ensemble members are still not completely indepen-

dent by day 7 (Fig.A1,middle).On the other hand, the case

variance is not as representative, and the variance ratios are

especially noisy in tropical areas (Fig. A1, bottom).

APPENDIX B

Bootstrap Tests on RMS Error Differences

The RMSEs in this study were defined as the square

root of case-mean and area-mean squared errors of

ensemble-mean forecasts with respect to truth (see

sections 2b and 3a). Because parametric forms of the

probability distributions of RMSEs or RMSE differ-

ences (hereafter DRMSEs) are generally unknown,

we used a Bootstrap method (Efron 1982; Efron and

Tibshirani 1993) to estimate the sampling distributions

of DRMSEs to assess the significance of DRMSEs ob-

tained between any two forecast sets. To this end we

combined the 100 forecast cases in each set into a pool

of 200 cases. By randomly drawing with replacement

from the pool, two new separate 100-case samples were

made, and their DRMSE was calculated. Repeating

this process 1000 times yielded 1000 values of DRMSE

for estimating the sampling DRMSE distribution. The

statistical significance of the actual DRMSE was then

judged by whether it ranked above the 97.5 percentile or

below the 2.5 percentile of this constructed DRMSE

distribution for a two-sided statistical test. This process

was repeated for each 12-hourly forecast lead time up

to 168 h (7 days).

Figures B1–B3 show global and regional DRMSEs

between the Control and the other three (Denial,

EnKFonly, and noSP) forecasts, corresponding to

Figs. 2, 3, and 7 respectively, as well as the 97.5% and

2.5% percentiles of the DRMSEs of their respective

sampling distributions. Fig. B1 shows that the Con-

trol global RMSEs are significantly smaller than the

Denial only for j200hPa and v500hPa in the first 24 h of

the forecasts, confirming that the ENRR observations

only benefit short-term forecasts at smaller spatial

scales. The general pattern in Figs. B1–B3 shows that

hybrid initialization (Control forecasts) significantly

lowers the RMSEs in the first few days, compared to

EnKF initialization (EnKFonly forecasts). Also, us-

ing SPs (Control forecasts) significantly lowers the

RMSEs in the later part of the 7-day forecast evolu-

tion, compared to not using SPs (noSP forecasts).

The exceptions are AP12HR DRMSEs between 608S
and 608N (Fig. B1f), which do not ever exceed the

confidence interval, and Z200hPa DRMSEControl-noSP

FIG. B2. As in Fig. B1, but for v500hPa in (a) Northern Hemisphere, (b) Southern Hemisphere, (c) tropics, and

(d) contiguous United States. See Fig. 3 and context for domain definitions.
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(Fig. B3d), which shows larger errors when using SPs

especially in the tropics.
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